Solution 1

1. A finite trigonometric series is of the form $a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n x+b_{n} \sin n x\right)$. A trigonometric polynomial is of the form $p(\cos x, \sin x)$ where $p(x, y)$ is a polynomial of two variables x, y. Show that a function is a trigonometric polynomial if and only if it is a finite Fourier series.
Solution Let

$$
p(x, y)=\sum_{j, k, 1 \leq j+k \leq N}^{N} a_{j k} x^{j} y^{k}
$$

be a polynomial of degree N. A general trigonometric polynomial is of the form

$$
p(\cos x, \sin x)=\sum_{j, k} a_{j k} \cos ^{j} x \sin ^{k} x
$$

Plugging Euler's formulas $\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right), \sin x=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)$, into this expression, one has

$$
p(\cos x, \sin x)=\sum_{j, k} a_{j k}\left(\frac{e^{i x}+e^{-i x}}{2}\right)^{j}\left(\frac{e^{i x}-e^{-i x}}{2 i}\right)^{k}
$$

Collecting the terms into series in $e^{i n x}$,

$$
p(\cos x, \sin x)=\sum_{n=-N}^{N} c_{n} e^{i n x}
$$

which is a finite Fourier series.
Conversely, observe that $\cos 2 x=\cos ^{2} x-\sin ^{2} x, \sin 2 x=2 \cos x \sin x$, by induction you can show that $\cos n x$ and $\sin n x$ can be expressed as $p(\cos x, \sin x)$ of degree N. Hence a finite Fourier series $f(x)=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ can be written as a trigonometric polynomial.
2. Let f be a 2π-periodic function which is integrable over $[-\pi, \pi]$. Show that it is integrable over any finite interval and

$$
\int_{I} f(x) d x=\int_{J} f(x) d x
$$

where I and J are intervals of length 2π.
Solution It is clear that f is also integrable on $[n \pi,(n+2) \pi], n \in \mathbb{Z}$, so it is integrable on the finite union of such intervals. As every finite interval can be a subinterval of intervals of this type, f is integrable on any $[a, b]$. To show the integral identity it suffices to take $J=[-\pi, \pi]$ and $I=[a, a+2 \pi]$ for some real number a. Since the length of I is 2π, there exists some n such that $n \pi \in I$ but $(n+2) \pi$ does not belong to the interior of I. We have

$$
\int_{a}^{a+2 \pi} f(x) d x=\int_{a}^{n \pi} f(x) d x+\int_{n \pi}^{a+2 \pi} f(x) d x
$$

Using

$$
\int_{a}^{n \pi} f(x) d x=\int_{a+2 \pi}^{(n+2) \pi} f(x) d x
$$

(by a change of variables), we get

$$
\int_{a}^{a+2 \pi} f(x) d x=\int_{a+2 \pi}^{(n+2) \pi} f(x) d x+\int_{n \pi}^{a+2 \pi} f(x) d x=\int_{n \pi}^{(n+2) \pi}
$$

Now, using a change of variables again we get

$$
\int_{n \pi}^{(n+2) \pi} f(x) d x=\int_{-\pi}^{\pi} f(x) d x
$$

3. Verify that the Fourier series of every even function is a cosine series and the Fourier series of every odd function is a sine series.

Solution Write

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

Suppose $f(x)$ is an even function. Then, for $n \geq 1$, we have

$$
\pi b_{n}=\int_{-\pi}^{\pi} \sin n x f(x) d x=\int_{-\pi}^{0} \sin n x f(x) d x+\int_{0}^{\pi} \sin n x f(x) d x
$$

By a change of variable and using $f(-x)=f(x)$ since $f(x)$ is an even function,

$$
\int_{-\pi}^{0} \sin n x f(x) d x=\int_{0}^{\pi} \sin (-n x) f(-x) d x=-\int_{0}^{\pi} \sin n x f(x) d x
$$

one has

$$
\pi b_{n}=-\int_{0}^{\pi} \sin n x f(x) d x+\int_{0}^{\pi} \sin n x f(x) d x=0
$$

Hence the Fourier series of every even function f is a cosine series.
Now suppose $f(x)$ is an odd function. Then, for $n \geq 1$, we have

$$
\pi a_{n}=\int_{-\pi}^{\pi} \cos n x f(x) d x=\int_{-\pi}^{0} \cos n x f(x) d x+\int_{0}^{\pi} \cos n x f(x) d x
$$

By a change of variable and using $f(-x)=-f(x)$ since $f(x)$ is an odd function,

$$
\int_{-\pi}^{0} \cos n x f(x) d x=\int_{0}^{\pi} \cos (-n x) f(-x) d x=-\int_{0}^{\pi} \cos n x f(x) d x
$$

one has

$$
\pi a_{n}=-\int_{0}^{\pi} \cos n x f(x) d x+\int_{0}^{\pi} \cos n x f(x) d x=0, \quad \forall n \geq 0
$$

4. Here all functions are defined on $[-\pi, \pi]$. Verify their Fourier expansion and determine their convergence and uniform convergence (if possible).
(a)

$$
x^{2} \sim \frac{\pi^{2}}{3}-4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos n x
$$

(b)

$$
|x| \sim \frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos (2 n-1) x
$$

(c)

$$
f(x)=\left\{\begin{array}{ll}
1, & x \in[0, \pi] \\
-1, & x \in[-\pi, 0]
\end{array} \sim \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin (2 n-1) x\right.
$$

(d)

$$
g(x)=\left\{\begin{array}{ll}
x(\pi-x), & x \in[0, \pi) \\
x(\pi+x), & x \in(-\pi, 0)
\end{array} \sim \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{3}} \sin (2 n-1) x\right.
$$

Solution

(a) Consider the function $f_{1}(x)=x^{2}$. As $f_{1}(x)$ is even, its Fourier series is a cosine series and hence $b_{n}=0$.

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x=\left.\frac{1}{2 \pi} \frac{x^{3}}{3}\right|_{-\pi} ^{\pi}=\frac{\pi^{2}}{3}
$$

and by integration by parts,

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos n x d x \\
& =\left.\frac{1}{n \pi} x^{2} \sin n x\right|_{-\pi} ^{\pi}-\frac{2}{n \pi} \int_{-\pi}^{\pi} x \sin n x d x \\
& =\left.\frac{2}{n^{2} \pi} x \cos n x\right|_{-\pi} ^{\pi}-\frac{2}{n^{2} \pi} \int_{-\pi}^{\pi} \cos n x d x \\
& =4 \frac{(-1)^{n}}{n^{2}}
\end{aligned}
$$

For $n \geq 1$,

$$
\left|a_{n}\right|=\left|-4 \frac{(-1)^{n+1}}{n^{2}}\right| \leq \frac{4}{n^{2}}
$$

We conclude that the Fourier series converges uniformly by the Weierstrass M-test.
(b) Consider the function $f_{2}(x)=|x|$. As $f_{2}(x)$ is even, its Fourier series is a cosine series and hence $b_{n}=0$.

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|x| d x=\left.\frac{1}{2 \pi} \frac{x^{2}}{2}\right|_{-\pi} ^{\pi}=\frac{\pi}{2}
$$

and by integration by parts,

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi}|x| \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x \\
& =\left.\frac{2}{n \pi} x \sin n x\right|_{0} ^{\pi}-\frac{2}{n \pi} \int_{0}^{\pi} \sin n x d x \\
& =-\left.\frac{2}{n^{2} \pi} \cos n x\right|_{0} ^{\pi} \\
& =-2 \frac{\left[(-1)^{n}-1\right]}{n^{2} \pi}
\end{aligned}
$$

For $n \geq 1$,

$$
\left|a_{n}\right|=\left|2 \frac{\left[(-1)^{n}-1\right]}{n^{2} \pi}\right| \leq \frac{4}{\pi n^{2}}
$$

We conclude that the Fourier series converges uniformly by the Weierstrass M-test.
(c) As $f(x)$ is odd, its Fourier series is a sine series and hence $a_{n}=0$.

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} \sin n x d x \\
& =\left.\frac{2}{n \pi} \cos n x\right|_{0} ^{\pi} \\
& =2 \frac{\left[(-1)^{n}-1\right]}{n \pi}
\end{aligned}
$$

Now we consider the convergence of the series $\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin (2 n-1) x$. Fix $x \in(-\pi, 0) \cup(0, \pi)$, Using the elementary formula

$$
\sum_{n=1}^{N} \sin (2 n-1) x=\frac{\sin ^{2}(N+1) x}{\sin x}
$$

one has that the partial sums $\left|\sum_{n=1}^{N} \sin (2 n-1) x\right|=\left|\frac{\sin ^{2}(N+1) x}{\sin x}\right| \leq\left|\frac{1}{\sin x}\right|$ are uniformly bounded. This also holds for $x=0$, in which case $\left|\sum_{n=1}^{N} \sin (2 n-1) 0\right|=0$. Furthermore, the coefficients $1 /(2 n-1)$ decreases to 0 . We conclude that the Fourier series converges pointwisely by Dirichlet's test.
(d) As $g(x)$ is odd, its Fourier series is a sine series and hence $a_{n}=0$. By integration by parts,

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} x(\pi-x) \sin n x d x \\
& =-\left.\frac{2}{n \pi} x(\pi-x) \cos n x\right|_{0} ^{\pi}+\frac{2}{n \pi} \int_{0}^{\pi}(\pi-2 x) \cos n x d x \\
& =\left.\frac{2}{n^{2} \pi}(\pi-2 x) \sin n x\right|_{0} ^{\pi}+\frac{4}{n^{2} \pi} \int_{0}^{\pi} \sin n x d x \\
& =-\left.\frac{4}{n^{3} \pi} \cos n x\right|_{0} ^{\pi} \\
& =-\frac{4}{n^{3} \pi}\left[(-1)^{n}-1\right]
\end{aligned}
$$

As

$$
\left|b_{n}\right| \leq \frac{8}{\pi n^{3}},
$$

we conclude that the Fourier series converges uniformly by the Weierstrass M-test.
5. Let f be a π-periodic function which is infinitely many times differentiable on \mathbb{R}. Show that its Fourier coefficients are of order $o\left(1 / n^{k}\right)$ for any $k \geq 1$, that is, $a_{n} n^{k}, b_{n} n^{k} \rightarrow 0$ as $n \rightarrow \infty$ for any k. Hint: Better use complex notation.
Solution. We use complex notation. Let c_{n}^{k} be the Fourier series of $f^{(k)}$. We have $c_{n}^{k}=(i n)^{k} c_{n}$ for all n and k. Replacing k by $k+1$, we have

$$
\left|c_{n}\right| \leq \frac{\left|c_{n}^{k+1}\right|}{\left|(i n)^{k+1}\right|} \leq \frac{C}{n^{k+1}}
$$

where in the second step we have applied Riemann-Lebsegue Lemma to $f^{(k+1)}$. We conclude $n^{k}\left|c_{n}\right| \leq C n^{-1} \rightarrow 0$ as $n \rightarrow \infty$.

Remark A sequence $\left\{a_{n}\right\}$ satisfies $a_{n}=\mathrm{o}\left(n^{\sigma}\right)$ if

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n^{\sigma}}=0
$$

It satisfies

$$
a_{n}=\mathrm{O}\left(n^{\sigma}\right)
$$

if there is a constant C such that

$$
\frac{\left|a_{n}\right|}{n^{\sigma}} \leq C, \quad \forall n \geq 1
$$

6. Let f be a 2π-periodic function whose derivative exists and is integrable on $[-\pi, \pi]$. Show that its Fourier series decay to 0 as $n \rightarrow \infty$ without appealing to Riemann-Lebesgue Lemma. Hint: Use integration by parts to relate the Fourier coefficients of f to those of f^{\prime}.
Solution Performing integration by parts yields

$$
\pi a_{n}=\int_{-\pi}^{\pi} f(x) \cos n x d x=-\frac{1}{n} \int_{-\pi}^{\pi} f^{\prime}(x) \sin n x d x
$$

Therefore,

$$
\pi\left|a_{n}\right| \leq \frac{1}{n} \int_{-\pi}^{\pi}\left|f^{\prime}(x)\right| d x \rightarrow 0, \quad n \rightarrow \infty
$$

Similarly the same result holds for b_{n}.
7. Use the previous exercise to give prove Riemann-Lebsgue Lemma. Hint: Every integrable function can be approximated by C^{1}-functions in appropriate sense.
Solution For every integrable function f, given $\varepsilon>0$, there is a step function s such that

$$
\int_{a}^{b}|f-s| d x<\frac{\varepsilon}{2}
$$

On the other hand, it is geometrically evident (by smoothly connecting the jumps) that for the step function s, given $\varepsilon>0$, there is a C^{1}-function g such that

$$
\int_{a}^{b}|s-g| d x<\frac{\varepsilon}{2}
$$

The desired result follows by putting these two estimates together.
Remark The second step can be described more analytically, but I prefer not to.
8. Let f be a continuous 2π-periodic function. Show that its Fourier series decay to 0 as $n \rightarrow \infty$ without appealing to Riemann-Lebsegue lemma. Hint: Establish the formula

$$
2 \pi a_{n}=\int_{-\pi}^{\pi}[f(y)-f(y+\pi / n)] \cos n y d y
$$

using Problem 2.

Solution Setting $y=z+\pi / n$, we have

$$
\begin{aligned}
\pi a_{n} & =\int_{-\pi}^{\pi} f(y) \cos n y d y \\
& =\int_{-\pi+\pi / n}^{\pi+\pi / n} f(z+\pi / n) \cos (z+\pi / n) d z \\
& =\int_{-\pi+\pi / n}^{\pi+\pi / n} f(z+\pi / n)(-\cos z) d z \\
& =-\int_{-\pi}^{\pi} f(y+\pi / n) d y .
\end{aligned}
$$

It follows that

$$
2 \pi a_{n}=\int_{-\pi}^{\pi}[f(y)-f(y+\pi / n)] \cos n y d y
$$

and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Similarly $b_{n} \rightarrow 0$.
9. Let f be a bounded function on $[a, b]$ and $x \in[a, b] . f$ is said to be locally Lipschitz continuous at x if there are some L and δ such that

$$
|f(y)-f(x)| \leq L|y-x|, \quad|y-x| \leq \delta, y \in[a, b]
$$

Show that f is Lipschitz continuous at x whenever it is locally Lipschitz continuous at x. Solution For $y \in(-\delta+x, x+\delta) \cap[a, b]$ we have $|f(y)-f(x)| \leq L|y-x|$ already. For $y,|y-x|>\delta$,

$$
|f(y)-f(x)| \leq \frac{\mid f(y|+f(x)|}{|y-x|}|y-x| \leq \frac{2 M}{\delta}|y-x|
$$

where M is a bound on f. Taking $L_{1}=\max \{L, 2 M / \delta\},|f(y)-f(x)| \leq L_{1}|y-x|$ for all y.

